ÔÚ½ñÊÀÊýѧµÄ¹ãÙóÌìµØÖУ¬artenalµÄÑо¿Ò»Ö±¿ªÍØÎÒÃǶԿռäºÍ½á¹¹µÄÈÏÖª¡£ÆäÖУ¬¡°algebraicorbitfolds¡±×÷ΪһÖÖ¼«¸»ÀíÏëÉ«²ÊµÄ¼¸ºÎ½á¹¹£¬ÕýÖð½¥×ßÈëѧÊõµÄ¾Û¹âµÆÏ¡£ËüÃDz»µ«ÊÇÒ»ÖÖÖØ´óµÄ¿Õ¼ä¹¤¾ß£¬¸üÊÇÅþÁ¬´úÊý¡¢¼¸ºÎ¡¢ÍØÆËÓëÎïÀíѧµÄÇÅÁº¡£
ÒªÃ÷È·orbitfoldsµÄÉñÃØ£¬Ê×ÏÈÒª´Ó×î»ù±¾µÄ½ç˵ºÍÐÔ×Ó×îÏÈ¡£
Ëùνorbitfolds£¨¹ìµÀÁ÷£©ÊµÖÊÉÏÊÇÒ»ÀàÔÚijЩ¿Õ¼äÖоßÓÐÌØÊâ¶Ô³ÆÐÔºÍÆæµãµÄ¿Õ¼ä½á¹¹£¬Í¨³£·ºÆðÔÚÑо¿¿Õ¼äµÄ¾Ö²¿ºÍÈ«¾Ö¶Ô³ÆÐÔʱ¡£ËüÃÇ¿ÉÒÔ±»ÊÓΪ¹ãÒåµÄ¡°¶à±ßÐΡ±»ò¡°Æ´Í¼¡±£¬ÔÚ¾Ö²¿½á¹¹ÉÏÓÉÄ³Ð©ÌØ¶¨µÄ¶Ô³ÆÈº×÷Óöø³É¡£¸üÏêϸÀ´Ëµ£¬algebraicorbitfoldsÖ¸µÄÊÇÄÇЩÓÉ´úÊý´Ø£¨algebraicvariety£©ºÍÓÐÏÞȺ×÷ÓÃÐγɵĿռ䡣
Õâ¸ö½ç˵¼È°üÀ¨ÁËÖØ´óµÄ¼¸ºÎ½á¹¹£¬ÓÖÒýÈëÁ˸»ºñµÄ´úÊýÐÔ×Ó£¬ÎªÑо¿ÌṩÁ˶àÖØ½Ç¶È¡£
ÕâЩorbitfoldsµÄ·ÖÀà¶àÑù£¬µ«½¹µã¿ÉÒÔ¹éÄÉΪ¼¸Öֵ䷶ÀàÐÍ¡£µÚÒ»ÀàÊÇ¡°Í¨Ë×¹ìµÀÁ÷¡±£¬ËüÃÇÔÚ¾Ö²¿½á¹¹ÉÏÏà¶Ô¼òÆÓ£¬Ã»ÓÐÆæµã£¬Àà±ÈÓÚÆ½»¬µÄ¶àÃæÌå»ò¶þÔª¿Õ¼ä¡£ÕâÀà½á¹¹ÔÚÊýѧÖеÄ×÷ÓÃÆ«»ù´¡£¬µ«Æä¹æ·¶ÎªÑо¿¸üÖØ´óorbitfoldsÌṩÁ˵ÓÚ¨¡£µÚ¶þÀàÊÇ¡°ÓÐÏÞÆæµã¹ìµÀÁ÷¡±£¬ÕâЩ¿Õ¼äÔÚijЩµãÉϱ£´æÆæµã£¬ÀàËÆÓÚ¶àÃæÌåµÄ¡°¼â½Ç¡±»ò¡°½¹µã¡±¡£
ÆæµãµÄ±£´æÊ¹µÃÕâЩ¿Õ¼äµÄÍØÆË½á¹¹¼«Îª¸»ºñ£¬Ò²ÊÇÑо¿µÄÈÈÃÅÖ®Ò»¡£
µÚÈýÀàÊÇ¡°´úÊý»¯¹ìµÀÁ÷¡±£¬ËüÃǽÓÄÉ´úÊý´Ø×÷Ϊ»ù´¡£¬ÄÚǶÔÚÖØ´óµÄ´úÊý½á¹¹ÖС£ÔÚÕâЩ¿Õ¼äÖУ¬Èº×÷ÓÃͨ³£ÈªÔ´ÓÚijЩÀîȺ»òÓÐÏÞÌìÉúµÄ´úÊýȺ£¬´øÀ´¶Ô³ÆÐԺͽṹµÄÉîÌõÀíÃ÷È·¡£ÕâÀà¹ìµÀÁ÷³£·ºÆðÔÚÏÒÀíÂÛ¡¢»¡¿Õ¼äÒÔ¼°ÍäÇú¿Õ¼äµÈÇ°ÑØÎïÀíÁìÓòÖУ¬¾ßÓм«¸ßµÄÀíÂÛ¼ÛÖµºÍDZÔÚÓ¦Óá£
ÔÚÏÖʵÑо¿ÖУ¬Êýѧ¼ÒÃÇ»¹»á½èÖú´úÊý¼¸ºÎÖеŤ¾ß£¬ºÃ±ÈÄ£¿Õ¼ä£¨modulispace£©¡¢ÊøÀíÂÛ£¨bundletheory£©ºÍÁýÕֿռ䣨coveringspace£©£¬È¥ÐÎòºÍ·ÖÀà²î±ðÀàÐ͵Äorbitfolds¡£ÓÈÆäÊÇÔÚÏÒÀíÂÛºÍÍäÇú¿Õ¼äµÄÑо¿ÖУ¬orbitfoldsµÄÓ¦ÓÃÒѳÉΪ²»¿É»òȱµÄ¹¤¾ß¡£
ËüÃÇ×ÊÖú¿ÆÑ§¼ÒÐÎòÓîÖæÎ¢¹Û½á¹¹µÄÆæÒìÐÔ¡¢¶àÑùÐÔ£¬ÒÔ¼°ÖÖÖÖ¿ÉÄܵĿռ䡰ÕÛµþ¡±×´Ì¬¡£
algebraicorbitfolds×÷ΪһÖÖ¸»ºñµÄÊýѧ½á¹¹£¬Õý´¦ÓÚÊýѧºÍÎïÀí½»Ö¯µÄÇ°ÑØ¡£ËüÃǵÄÑо¿²»µ«ÓÐÖúÓÚÕ¹ÏÖ¿Õ¼ä×Ô¼ºµÄʵÖÊ£¬»¹¿ÉÄÜÍÆ¶¯ÐÂÒ»ÊðÀíÂÛÎïÀíѧµÄÉú³¤¡£ÄÇÐ©ÖØ´óµÄÆæµã¡¢ÌØÊâµÄ¶Ô³ÆÐÔºÍÉî¿ÌµÄ½á¹¹ÌØÕ÷£¬ËƺõÆôʾ¼°ã£¬ÈÃÈ˶ÔδÀ´µÄÊýѧ̽Ë÷³äÂúÆÚ´ý¡£
ÎÒÃǽ«ÉîÈë̽ÌÖÕâЩorbitfoldsÖеÄÏêϸÀàÐÍ£¬¼°ÆäÔÚÏÖʵÖеÄÓ¦ÓÃÓëÀíÂÛÒâÒå¡£
ÔÚµÚÒ»²¿·ÖµÄÆÌµæÏ£¬½ñÌìÎÒÃǽ«¸üÏêϸµØ¾Û½¹ÓÚ¼¸Öֵ䷶µÄalgebraicorbitfoldsÀàÐÍ£¬ÒÔ¼°ËüÃÇÔÚ²î±ðÁìÓòÖеÄÓ¦ÓÃÔ¶¾°¡£ÕâЩÀàÐͲ»µ«´ú±í×ſռä½á¹¹µÄ¶àÑùÐÔ£¬Ò²ÕÃÏÔÁËÏÖ´úÊýѧµÄÉî¶ÈºÍδÀ´Ç±Á¦¡£
Ê×ÏÈÒªÌáµÄ×ÔÈ»ÊÇ¡°Í¨Ë×¹ìµÀÁ÷¡±¡£ÕâÀà½á¹¹ÔÚ¾Ö²¿ÌåÏÖ³öµÄÊÇÆ½»¬ºÍ¹æÔò£¬ÀàËÆÓÚûÓÐÆæÒìµãµÄ¿Õ¼ä¡£ËüÃÇ¿ÉÒÔ¿´×÷ÊÇ×î»ù±¾µÄorbitfolds£¬Í¨³£·ºÆðÔÚÑо¿¿Õ¼äµÄ¶Ô³ÆÐÔ»òȺ×÷ÓÃʱ¡£ºÃ±È£¬±ê×¼µÄ¼¸ºÎ¿Õ¼äÖУ¬Èô¿Õ¼äûÓÐÆæµã£¬ÄÇôËü¾ÍÊÇÒ»ÖÖͨË×µÄorbitfold¡£
ÕâЩ¿Õ¼äÔÚ¶à·½Ãæ¶¼ÊÎÑÝ×Å»ù´¡½ÇÉ«£º×÷Ϊ¹¹½¨ÖØ´óÄ£×ӵġ°×©¿é¡±¡¢×÷ΪÀíÂÛÑéÖ¤µÄ¡°²âÊÔ³¡¡±£¬ÉõÖÁ×÷Ϊ¸üÖØ´ó½á¹¹µÄ¼«ÏÞÇéÐΡ£
ÓëÖ®Ïà¶ÔµÄ£¬ÔòÊÇ¡°ÓÐÏÞÆæµã¹ìµÀÁ÷¡±¡£ÔÚÕâЩ¿Õ¼äÖУ¬Ä³Ð©µã¾ßÓÐÌØÊâµÄ¾Ö²¿ÆæÒì½á¹¹£¬ºÃ±ÈÕ۽ǡ¢½¹µãÉõÖÁ¸üÖØ´óµÄÆæµã¡£ÕâÐ©Ææµã²»µ«¸Ä±äÁ˿ռäµÄʵÖÊÐÎ̬£¬Ò²´øÀ´Á˸»ºñµÄÊýѧÕ÷Ïó¡£ÀýÈ磬¶þ´ÎÆæµã¡¢¼«µãÆæµãµÈ£¬ËüÃÇÔÚÍØÆËѧ¡¢Å·¼¸ÀïµÃ¼¸ºÎÉõÖÁÎïÀíѧÖеÄÒâÒåºÜÊÇÖØ´ó¡£
ÈçÔÚÏÒÀíÂÛÖУ¬¿Õ¼äµÄÆæµã¶ÔÓ¦×Å»ù±¾Á£×ӵġ°¾À¸ðµã¡±£¬¾ßÓв»¿ÉºöÊÓµÄ×÷Óá£
³ýÁËÆæµãµÄ·ÖÀàÍ⣬´úÊý»¯¹ìµÀÁ÷ÔڽṹÉÏ»¹Õ¹ÏÖ³ö¸ß¶ÈµÄ¶Ô³ÆÐÔ¡£ÀýÈ磬ijЩorbitfoldsÓÉÌØ¶¨ÀîȺ×÷Óöø³É£¬ÐγÉÁ˾ßÓм«¸ß¶Ô³Æ¶ÈºÍÌØÊ⼸ºÎÐÔ×ӵĿռ䡣ÕâЩ¿Õ¼äÔÚÏÒÀíÂÛÖÐÓÈΪÖ÷Òª£¬ÓÉÓÚËüÃÇÄÜΪÑо¿ÏÒµÄÕñ¶¯ºÍÍäÇúÌṩÀíÏëµÄ¼¸ºÎÅä¾°¡£¾ßÓÐÌØÊâ¶Ô³ÆÐÔµÄorbitfoldsÍùÍùÅãͬן»ºñµÄ´¿´âÊýѧ½á¹¹£¬ºÃ±ÈÄ£¿Õ¼ä¡¢´ø½á¹¹¡¢ÒÔ¼°ÌØÊâµÄÊø¡£
Ò»¸öÖµµÃÒ»ÌáµÄÑо¿ÁìÓòÊÇ¡°ÕÛµþºÍÆÊÎö¡±¡£¿ÆÑ§¼ÒÃÇ̽ÌÖÔõÑù½«ÖØ´óµÄorbitfoldsͨ¹ý¡°¾Ö²¿Ä£×Ó¡±ÆÊÎö³É¸ü»ù±¾µÄƬ¶Ï£¬Öð²½»¹Ô³öÕûÌå½á¹¹¡£Õâ¸öÀú³ÌÀàËÆÓÚÆ´Í¼ÓÎÏ·£¬°Ñÿһ¿é¡°Ë鯬¡±·ÖÀà¡¢Ã÷È·ºó£¬ÔÙÆ´¼¯³öÍêÕûµÄ¿Õ¼ä¡£ÆæµãÀíÂÛÔÚÕâÀïʩչ×ÅÖÁ¹ØÖ÷ÒªµÄ×÷Óá£
Ã÷È·ÆæµãµÄÀàÐÍ¡¢ÐÔ×Ó¡¢ÒÔ¼°ÆäÔÚ¾Ö²¿¿Õ¼äÖеÄÌåÏÖ£¬ÄÜΪÕûÌå½á¹¹µÄ·ÖÀàÌṩÖ÷ÒªÏßË÷¡£
ÏÖ´úÊÖÒÕµÄÉú³¤¼«´óÍÆ¶¯ÁËÕâÀàÑо¿µÄÉîÈë¡£ÅÌËã»úÄ£Äâ¡¢·ûºÅÅÌËãºÍ¸ßµÈ΢·Ö¼¸ºÎ¹¤¾ß£¬×ÊÖúÊýѧ¼ÒÔÚÖØ´óµÄorbitfoldsÖÐÕÒµ½¡°ÌØÕ÷Öµ¡±¡¢¡°ÎȹÌÁ¿¡±ºÍ¡°Ä£¿Õ¼ä¡±½á¹¹¡£ÕâЩҪÁì²»µ«×ÊÖúÀíÇå¿Õ¼äµÄÄÚ²¿½á¹¹£¬¸üÄÜÔÚijЩÇéÐÎÏÂÕ¹ÍûÆäÔÚÎïÀí¿Õ¼äÖеÄÌåÏÖ¡£
ÀýÈ磬ÔÚÏÒÂÛÖУ¬Ñо¿ÆæµãºÍ¶Ô³ÆÐÔ¶ÔÓ¦µÄ¿Õ¼ä¡°ÕÛµþ¡±Àú³Ì£¬Îª²¶»ñ΢¹ÛÁ£×ÓÐÐΪÌṩÁËÀíÂÛ»ù´¡¡£
δÀ´£¬algebraicorbitfoldsµÄÓ¦ÓÃÔ¶¾°ÎÞÏÞ¿íÀ«¡£´ÓÀíÂÛÎïÀíµ½´¿Êýѧ£¬ÔÙµ½ÅÌËã»ú¿ÆÑ§£¬ÉõÖÁÔÚÁ¿×ÓÅÌËã¡¢ºÚ¶´ÐÅÏ¢ã£ÂÛµÈÇ°ÑØÎÊÌâÖУ¬ËüÃǶ¼¿ÉÄÜÊÎÑÝÒªº¦½ÇÉ«¡£¿ÆÑ§¼ÒÃÇÕýʵÑéÓÃorbitfoldsµÄ½á¹¹½â´ð¿Õ¼ä¡¢Ê±¼äÒÔÖÂÓîÖæÆðÔ´µÄ»ù´¡ÃÕÌâ¡£
¶àÑùÀàÐ͵ÄorbitfoldsÅäºÏ»æÖÆÁËÒ»·ù¸»ºñµÄÊýѧ»¾í£¬Ò²ÎªÎ´À´µÄ¿ÆÑ§Ì½Ë÷µãÁÁÁËÏ£ÍûµÄµÆËþ¡£
ÒÔÊÇ£¬ÆñÂÛÄãÊǶԴ¿ÀíÂÛ¸ÐÐËȤ£¬ÕվɶÔÏÖʵӦÓóäÂúºÃÆæ£¬Õâ¸öÁìÓò¶¼ÖµµÃÉîÈëÑо¿¡£Ã¿Ò»ÖÖorbitfoldsµÄÀàÐͱ³ºó£¬¶¼²Ø×ÅÎÞÏÞµÄÉñÃØºÍ¿ÉÄÜÐÔ£¬ÆÚ´ý×ÅÓ¸ҵÄ̽Ë÷ÕßÈ¥½âÂ롢ȥÃ÷È·¡£Õⳡ¿Õ¼äÓë½á¹¹µÄÆæ»ÃÂọ́¬Ã»ÓÐÖյ㣬ֻÓÐÒ»Ö±ÍØÕ¹µÄ½çÏߣ¬ºÍÓÀһֱЪµÄ̽Ë÷¶¯Á¦¡£